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Abstract. A class of constrained multiobjective fractional programming problems is considered
from a viewpoint of the generalized convexity. Some basic concepts about the generalized convexity
of functions, including a unified formulation of generalized convexity, are presented. Based upon
the concept of the generalized convexity, efficiency conditions and duality for a class of multiob-
jective fractional programming problems are obtained. For three types of duals of the multiobjective
fractional programming problem, the corresponding duality theorems are also established.
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1. Introduction

A number of optimization problems are actually multiobjective optimization prob-
lems (MOPs), where the objectives are conflicting. As a result, there is usually no
single solution which optimizes all objectives simultaneously. A number of tech-
niques have been developed to find a compromise solution to MOPs. The reader is
referred to the recent book by Miettinen [16] about the theory and algorithms for
MOPs. Fractional programming problems(FPPs) arise from many applied areas
such as portfolio selection, stock cutting, game theory, and numerous decision
problems in management science. Many approaches for FPPs have been exploited
in considerable details. See, for example, Avriel et al. [3], Craven [5], Schaible
[24, 25], Schaible and Ibaraki [26] and Stancu-Minasian [27, 28].

In this paper, we consider the following multiobjective fractional programming
problem:

(MFP) min f (x)
g(x)

�=
(

f1(x)
g1(x)

,
f2(x)
g2(x)

, · · · ,
fp(x)

gp(x)

)T

,

s.t. h(x) � 0, x ∈ X,
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where X ⊂ Rn is an open set, fi, gi (i = 1, 2, · · · , p) are real-valued functions
defined on X, and h is an m-dimensional vector-valued function defined on X.
Suppose that fi(x) � 0 and gi(x) > 0 for x ∈ X and i = 1, 2, · · · , p. Moreover,
let fi, gi (i = 1, 2, · · · , p) and hj (j = 1, 2, · · · ,m) be continuously differenti-
able over X and denote the gradients of fi, gi and hj at x by ∇fi(x),∇gi(x) and
∇hj(x), respectively.

If the parameter p in the problem (MFP) is equal to 1, then (MFP) corresponds
to the following single-objective fractional programming problem:

(FP) min f (x)
g(x)

,

s.t. h(x) � 0, x ∈ X,

where X ⊂ Rn is an open set, f, g are real-valued functions defined on X, and h

is an m-dimensional vector-valued function defined on X, f (x) � 0 and g(x) > 0
for all x ∈ X. Moreover, assume that f (x), g(x) and hj(x) (j = 1, 2, · · · ,m) are
continuously differentiable over X.

Khan and Hanson [10], and Reddy and Mukherjee [21] considered the op-
timality conditions and duality for (FP) with respect to the following generalized
concepts of convexity, respectively.

DEFINITION 1.1. [6] Let f be a real function defined on an open set X ⊆ Rn

and differentiable at x0. Given a mapping η : X × X → Rn, the function f is said
to be invex at x0 with respect to η if, ∀x ∈ X, the following inequality holds:

f (x) − f (x0) � ∇f (x0)
T η(x, x0).

DEFINITION 1.2. [7] Let f be a real function defined on an open set X ⊆ Rn

and differentiable at x0. Given a real number ρ, a mapping η : X × X → Rn and
a scalar function d : X × X → R, the function f is said to be ρ-invex at x0 with
respect to η and d if, ∀x ∈ X, the following inequality holds:

f (x) − f (x0) � ∇f (x0)
T η(x, x0) + ρd2(x, x0).

The authors of references [10, 21] imposed the corresponding generalized convex-
ity on the numerator and denominator individually for the objective function in
the problem (FP), and then derived some optimality conditions and duality results.
How to extend these methods to the multiobjective case is still an open problem
[21].

As far as the multiobjective fractional problem (MFP) is concerned, Jeyakumar
and Mond [8] introduced a concept of v-invexity as follows.

DEFINITION 1.3. Let f : X → Rp be a real vector function defined on an open
set X ⊆ Rn and each component of f be differentiable at x0. The function f is said
to be v-invex at x0 ∈ X if there exist a mapping η : X × X → Rn and a function
αi : X × X → R+ \ {0} (i = 1, 2, · · · , p) such that, ∀x ∈ X,

fi(x) − fi(x0) � αi(x, x0)∇fi(x0)
T η(x, x0).



EFFICIENCY CONDITIONS AND DUALITY FOR MULTIOBJECTIVE FPPS 449

Jeyakumar and Mond [8] obtained some weak efficiency conditions and duality
results for a nonconvex multiobjective fractional programming problem via the
concept of v-invexity, v-pseudoinvexity and v-quasiinvexity.

Motivated by various concepts of generalized convexity, Liang et al. [12] in-
troduced a unified formulation of the generalized convexity, which was called
(F, α, ρ, d)-convexity, and obtained some corresponding optimality conditions and
duality results for the single-objective fractional problem (FP). In this paper, we
will extend the methods adopted for the single-objective problem (FP) in [12] to
the multiobjective problem (MFP).

DEFINITION 1.4. A function F : Rn → R is said to be sublinear if for any
α1, α2 ∈ Rn,

F(α1 + α2) � F(α1) + F(α2), (1)

and for any r ∈ R+, α ∈ Rn,

F(rα) = rF (α). (2)

Note that the concept of the sublinear function was given in Preda [20]. Now, a
sublinear function is defined simply as a function that is subadditive and positively
homogeneous, which is free of extraneous symbols in Preda [20]. It follows from
(2) that F(0) = 0.

Based upon the concept of the sublinear function, we recall the unified formula-
tion about generalized convexity, i.e., (F, α, ρ, d)-convexity, which was introduced
in [12] as follows.

DEFINITION 1.5. Given an open set X ⊂ �n, a number ρ ∈ R, and two functions
α : X ×X → R+ \ {0} and d : X ×X → R, a differentiable function f over X is
said to be (F, α, ρ, d)-convex at x0 ∈ X if for any x ∈ X, F(x, x0; · ) : Rn → R

is sublinear, and f (x) satisfies the following condition:

f (x) − f (x0) � F(x, x0;α(x, x0)∇f (x0)) + ρd2(x, x0). (3)

The function f is said to be (F, α, ρ, d)-convex over X if, ∀x0 ∈ X, it is (F, α, ρ, d)-
convex at x0; f is said to be strongly (F, α, ρ, d) − convex or (F, α) − convex if
ρ > 0 or ρ = 0, respectively.

From Definition 1.5, there are the following special cases:

(i) If α(x, x0) = 1 for all x, x0 ∈ X, then (F, α, ρ, d)-convexity is (F, ρ)-
convexity [20].

(ii) If F(x, x0;α(x, x0)∇f (x0)) = ∇f (x0)
T η(x, x0) for a certain mapping η :

X × X → Rn, then (F, α, ρ, d)-convexity is ρ-invexity defined in [7].
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(iii) If ρ = 0 or d(x, x0) ≡ 0 for all x, x0 ∈ X and F(x, x0;α(x, x0) ∇f (x0)) =
∇f (x0)

T η(x, x0) for a certain mapping η : X × X → Rn, then (F, α, ρ, d)-
convexity reduces to invexity [6].

In the following, ρ, α and d are referred to as parameters of (F, α, ρ, d)-convexity.
Furthermore, we will adopt the following conventions.

Let Rn+ denote the nonnegative orthant of Rn and xT denote the transpose of the
vector x ∈ Rn. For any two vectors x = (x1, x2, · · · , xn)

T , y = (y1, y2, · · · , yn)
T ∈

Rn, we denote:

x = y implying xi = yi, i = 1, 2, · · · , n;
x ≺ y implying xi � yi, i = 1, 2, · · · , n, but x 
= y;
x < y implying xi < yi, i = 1, 2, · · · , n;
x ⊀ y implying yi < xi for at least one i.

A solution of the problem (MFP) is referred to as an efficient (Pareto optimal)
solution, which is defined as follows.

DEFINITION 1.6. A feasible solution x0 ∈ X of (MFP) is called an efficient
solution of (MFP) if there exists no other feasible solution x ∈ X such that

f (x)

g(x)
≺ f (x0)

g(x0)
.

In [14], Maeda gave a kind of constraint qualification, which was called generalized
Guignard constraint qualification(GGCQ), under which he derived the following
Kuhn–Tucker type necessary conditions for a feasible solution x0 to be an efficient
solution to the problem (MFP):

If x0 is an efficient solution of (MFP) and (GGCQ) holds at x0 (Ref. [14]), then
there exist

τ = (τ1, τ2, · · · , τp)T ∈ R
p
+, τ > 0,

p∑
i=1

τi = 1 and λ = (λ1, λ2, · · · , λm)T ∈ Rm+
such that

∑p

i=1 τi∇ fi(x0)

gi(x0)
+ ∑m

j=1 λj∇hj(x0) = 0,

λjhj (x0) = 0, j = 1, 2, · · · ,m.

This paper is organized as follows. In Section 2, efficiency conditions for the
multiobjective fractional problem (MFP) involving (F, α, ρ, d)-convexity are pre-
sented. The duality properties of the problem (MFP) are studied in Section 3,
including several duals for (MFP) and some weak and strong duality theorems.
Concluding remarks are given in the last section.
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2. Efficiency Conditions

First, we present a lemma which indicates that (F, α, ρ, d)-convexity can be pre-
served after taking division.

LEMMA 2.1. Let X ⊂ Rn be an open set. Assume that p, q are real-valued
differentiable functions defined on X and p(x) � 0, q(x) > 0 for all x ∈ X. If
p and −q are (F, α, ρ, d)-convex at x0 ∈ X, then p

q is (F, α, ρ, d)-convex at x0,
where

α(x, x0) = α(x, x0)q(x0)

q(x)
, ρ = ρ

(
1 + p(x0)

q(x0)

)
, and d(x, x0) = d(x, x0)

q
1
2 (x)

.

Proof. For any x ∈ X, we have

p(x)

q(x)
− p(x0)

q(x0)
= p(x) − p(x0)

q(x)
− p(x0)(q(x) − q(x0))

q(x)q(x0)
.

By the (F, α, ρ, d)-convexity of p and −q, and p � 0, q > 0, we obtain

p(x)
q(x)

− p(x0)
q(x0)

� 1
q(x)

(
F

(
x, x0;α(x, x0)∇p(x0)

) + ρd2(x, x0)

)

+ p(x0)
q(x)q(x0)

(
F(x, x0;−α(x, x0)∇q(x0)) + ρd2(x, x0)

)
.

Based on the sublinearity of F and p � 0, q > 0, the following inequalities can be
obtained:

p(x)
q(x)

− p(x0)
q(x0)

� F

(
x, x0; α(x, x0)

q(x)
∇p(x0)

)
+ ρ

d2(x, x0)
q(x)

+F

(
x, x0;−α(x, x0)p(x0)

q(x)q(x0)
∇q(x0)

)
+ ρ

d2(x, x0)p(x0)
q(x)q(x0)

� F

(
x, x0; α(x, x0)

q(x)
· q(x0)∇p(x0) − p(x0)∇q(x0)

q(x0)

)

+ρ

(
1 + p(x0)

q(x0)

)
d2(x, x0)

q(x)

= F

(
x, x0; α(x, x0)q(x0)

q(x)
∇ p(x0)

q(x0)

)

+ρ

(
1 + p(x0)

q(x0)

)
d2(x, x0)

q(x)
.

Denote

α(x, x0) = α(x, x0)q(x0)

q(x)
, ρ = ρ

(
1 + p(x0)

q(x0)

)
, and d(x, x0) = d(x, x0)

q
1
2 (x)

.

Then we have

p(x)

q(x)
− p(x0)

q(x0)
� F

(
x, x0;α(x, x0)∇ p(x0)

q(x0)

)
+ ρd

2
(x, x0) ∀x ∈ X.
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Therefore, p
q is (F, α, ρ, d)-convex at x0. �

In the following, we present some sufficient efficiency conditions for (MFP)
under appropriate (F, α, ρ, d)-convexity assumptions.

THEOREM 2.1. Let x0 be a feasible solution of (MFP). Suppose that there exist

τ = (τ1, τ2, · · · , τp)T ∈ R
p
+, τ > 0,

p∑
i=1

τi = 1, and λ = (λ1, λ2, · · · , λm)T ∈ Rm+
such that

p∑
i=1

τi∇ fi(x0)

gi(x0)
+

m∑
j=1

λj∇hj(x0) = 0, (4)

λjhj (x0) = 0, j = 1, 2, · · · ,m. (5)

If fi and −gi (i = 1, 2, · · · , p) are (F, αi, ρi, di)-convex at x0, hj (j = 1, 2, · · · ,m)

is (F, βj , ζj , cj )-convex at x0, and

p∑
i=1

τiρi

d
2
i (x, x0)

αi(x, x0)
+

m∑
j=1

λjζj

c2
j (x, x0)

βj (x, x0)
� 0, (6)

where αi(x, x0) = αi(x, x0)gi(x0)
gi(x)

, ρi = ρi

(
1+fi(x0)

gi(x0)

)
, and di(x, x0) = di(x, x0)

g
1
2
i (x)

,

then x0 is a global efficient solution for (MFP).
Proof. Suppose that x0 is not a global efficient solution of (MFP). Then there

exists a feasible solution x such that

f (x)

g(x)
≺ f (x0)

g(x0)
,

that is, for i = 1, 2, · · · , p,

fi(x)

gi(x)
� fi(x0)

gi(x0)

and at least one inequality holds strictly.

By Lemma 2.1, for each i, 1 � i � p, fi
gi

is (F, αi, ρi, di)-convex, i.e.,

fi(x)

gi(x)
− fi(x0)

gi(x0)
� F

(
x, x0;αi(x, x0)∇ fi(x0)

gi(x0)

)
+ ρid

2
i (x, x0),

where

αi(x, x0) = αi(x, x0)gi(x0)

gi(x)
, ρi = ρi

(
1 + fi(x0)

gi(x0)

)
, and di(x, x0) = di(x, x0)

g
1
2
i (x)

.

Since αi(x, x0) > 0, by the sublinearity of F , we have

1

αi(x, x0)

(
fi(x)

gi(x)
− fi(x0)

gi(x0)

)
� F

(
x, x0; ∇ fi(x0)

gi(x0)

)
+ ρi

d
2
i (x, x0)

αi(x, x0)
,
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where the left-hand side of the above inequality is less than or equal to zero. Hence,
we obtain the following p inequalities,

F

(
x, x0; ∇ fi(x0)

gi(x0)

)
+ ρi

d
2
i (x, x0)

αi(x, x0)
� 0, i = 1, 2, · · · , p,

and at least one inequality holds strictly.
Multiplying the above p inequalities with τi , respectively, and then adding them

together, we have

p∑
i=1

τiF

(
x, x0; ∇ fi(x0)

gi(x0)

)
+

p∑
i=1

τiρi

d
2
i (x, x0)

αi(x, x0)
< 0.

By the sublinearity of F and τi > 0 (i = 1, 2, · · · , p), we know that

p∑
i=1

τiF

(
x, x0; ∇ fi(x0)

gi(x0)

)
� F

(
x, x0;

p∑
i=1

τi∇ fi(x0)

gi(x0)

)
.

Hence, we get

F

(
x, x0;

p∑
i=1

τi∇ fi(x0)

gi(x0)

)
+

p∑
i=1

τiρi

d
2
i (x, x0)

αi(x, x0)
< 0. (7)

Substituting (4) into (7), we obtain

F(x, x0;−
m∑

j=1

λj∇hj(x0)) +
p∑

i=1

τiρi

d
2
i (x, x0)

αi(x, x0)
< 0. (8)

The sublinearity of F and (6) yield

F(x, x0;−
m∑

j=1
λj∇hj(x0)) +

p∑
i=1

τiρi

d
2
i (x, x0)

αi(x, x0)

+F(x, x0;
m∑

j=1
λj∇hj(x0)) +

m∑
j=1

λjζj

c2
j (x, x0)

βj (x, x0)

�
p∑

i=1
τiρi

d
2
i (x, x0)

αi(x, x0)
+

m∑
j=1

λjζj

c2
j (x, x0)

βj (x, x0)

� 0.

Using (8), we obtain

F(x, x0;
m∑

j=1

λj∇hj(x0)) +
m∑

j=1

λjζj

c2
j (x, x0)

βj (x, x0)
> 0. (9)
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On the other hand, for j = 1, 2, · · · ,m, by the (F, βj , ζj , cj )-convexity of hj , we
have

hj(x) − hj(x0) � F(x, x0;βj (x, x0)∇hj(x0)) + ζj c
2
j (x, x0).

By using λj � 0, βj (x, x0) > 0 and the sublinearity of F , we have

m∑
j=1

λj

hj (x) − hj(x0)

βj (x, x0)
� F(x, x0;

m∑
j=1

λj∇hj(x0)) +
m∑

j=1

λjζj

c2
j (x, x0)

βj (x, x0)
.

Since x is feasible and βj(x, x0) > 0, (5) implies that

m∑
j=1

λj

hj (x) − hj(x0)

βj (x, x0)
� 0.

Then, we obtain

F(x, x0;
m∑

j=1

λj∇hj(x0)) +
m∑

j=1

λjζj

c2
j (x, x0)

βj (x, x0)
� 0, (10)

which contradicts (9). Therefore, x0 is a global efficient solution for (MFP). �
COROLLARY 2.1. Let x0 be a feasible solution of (MFP). Suppose that there exist

τ = (τ1, τ2, · · · , τp)T ∈ R
p
+, τ > 0,

p∑
i=1

τi = 1, and λ = (λ1, λ2, · · · , λm)T ∈ Rm+
such that

p∑
i=1

τi∇ fi(x0)
gi(x0)

+
m∑

j=1
λj∇hj(x0) = 0,

λjhj (x0) = 0, j = 1, 2, · · · ,m.

If fi and −gi(i = 1, 2, · · · , p) are strongly (F, αi, ρi, di)-convex (or (F, αi)-
convex) at x0, hj (j = 1, 2, · · · ,m) is strongly (F, βj , ζj , cj )-convex (or (F, βj )-
convex) at x0, then x0 is a global efficient solution for (MFP).

Proof. We use the same notations as those in Theorem 2.1. Since ρi = ρi

(
1 +

fi(x0)
gi(x0)

)
and fi(x0) � 0, gi(x0) > 0, i = 1, 2, · · · , p, under the assumptions

of this corollary, we know that the inequality (6) holds. Therefore, x0 is a global
efficient solution of (MFP). �

For i = 1, 2, · · · , p, if gi(x) = 1 for all x ∈ X, fi(x) need not be nonnegative,
and the functions involved are assumed to be invex, ρ−invex with respect to η :
X × X → Rn, d : X × X → R, (F, ρ)-convex, or generalized (F, ρ)-convex,
respectively, then we can obtain the corresponding results presented in [1, 2, 9].
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Next, we consider a special case of (MFP), in which the fractional objective
functions have the same denominator. For i = 1, 2, · · · , p, let gi(x) = g(x)

in (MFP). The property about the efficient solution of this special (MFP) can be
obtained similarly as that in Theorem 2.1, so we state the following theorem:

THEOREM 2.2. Let x0 be a feasible solution of (MFP). Suppose that there exist

τ = (τ1, τ2, · · · , τp)T ∈ R
p
+, τ > 0,

p∑
i=1

τi = 1, and λ = (λ1, λ2, · · · , λm)T ∈ Rm+
such that

p∑
i=1

τi∇ fi(x0)
g(x0)

+
m∑

j=1
λj∇hj(x0) = 0,

λjhj (x0) = 0, j = 1, 2, · · · ,m.

If −g is (F, α, ρ, d)-convex at x0, fi (i = 1, 2, · · · , p) is (F, α, ρi, d)-convex at

x0, hj(j = 1, 2, · · · ,m) is (F, α, ζj , d)-convex at x0, and
p∑

i=1
τiρi +

m∑
j=1

λjζj � 0,

where α(x, x0) = α(x, x0)g(x0)
g(x)

, ρi = ρi + ρ
fi(x0)
g(x0)

, and d(x, x0) = d(x, x0)

g
1
2 (x)

,

then x0 is a global efficient solution for (MFP).

Finally, we present an equivalent formulation of the problem (MFP). Let G(x) =∏p

i=1 gi(x), Gi(x) = G(x)
gi(x)

(i = 1, 2, · · · , p). Then (MFP) can be written in the

following form:

(MFP ) min f (x)
g(x)

=
(

G1(x)f1(x)
G(x)

,
G2(x)f2(x)

G(x)
, · · · ,

Gp(x)fp(x)
G(x)

)T

,

s.t. h(x) � 0, x ∈ X.

By Theorem 2.2, we have the following corollary:

COROLLARY 2.2. Let x0 be a feasible solution of (MFP). Suppose that there exist

τ = (τ1, τ2, · · · , τp)T ∈ R
p
+, τ > 0,

p∑
i=1

τi = 1, and λ = (λ1, λ2, · · · , λm)T ∈ Rm+
such that

p∑
i=1

τi∇ fi(x0)
gi(x0)

+
m∑

j=1
λj∇hj(x0) = 0,

λjhj (x0) = 0, j = 1, 2, · · · ,m.

If −G is (F, α, ρ, d)-convex at x0, Gifi (i = 1, 2, · · · , p) is (F, α, ρi, d)-convex at

x0, hj (j = 1, 2, · · · ,m) is (F, α, ζj , d)-convex at x0, and
p∑

i=1
τiρi +

m∑
j=1

λjζj � 0,

where ρi = ρi + ρ
fi(x0)
gi(x0)

, α(x, x0) = α(x, x0)G(x0)
G(x)

, and d(x, x0) = d(x, x0)

G
1
2 (x)

,

then x0 is a global efficient solution for (MFP).
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Under the assumptions of Theorem 2.2 or Corollary 2.2, if ρ � max
1�i�p

ρi , ρi =

ρi

(
1 + fi(x0)

g(x0)

)
, or ρi = ρi

(
1 + fi(x0)

gi(x0)

)
, respectively, then the corresponding

results still hold.

3. Duality

In optimization theory, there are many types of duals for a given mathematical
programming problem. Two well-known duals are the Wolfe type dual [29] and
the Mond-Weir type dual [17]. Recently, the mixed (or general type) dual has been
considered for various optimization problems [1, 2, 11, 13, 18, 19, 20, 30, 31, 32].
The mixed dual includes the Wolfe type dual and the Mond-Weir type dual as
special cases. In the sequel, the generalized Mond-Weir dual is discussed first, and
then three other types of duals are presented, which are based on (F, α, ρ, d)-
convexity for the problem (MFP).

Let M = {1, 2, · · · ,m} and M0,M1, · · · ,Mq be a partition of M, i.e.,
⋃q

k=0
Mk = M,Mk

⋂
Ml = ∅ for k 
= l. The generalized Mond-Weir dual of (MFP) is

as follows:

max f (u)
g(u)

+ λT
M0

hM0(u) e :�=(
f1(u)
g1(u)

+ λT
M0

hM0(u), · · · ,
fp(u)
gp(u)

+ λT
M0

hM0(u)

)T

,

s.t.
p∑

i=1
τi∇ fi(u)

gi(u)
+

m∑
j=1

λj∇hj(u) = 0,

λT
Mk

hMk
(u) � 0, k = 1, 2, · · · , q,

τ = (τ1, τ2, · · · , τp)T ∈ R
p
+, τ > 0,

p∑
i=1

τi = 1,

λMk
∈ R

|Mk|+ , k = 0, 1, 2, · · · , q,

u ∈ X,

where e = (1, 1, · · · , 1)T and λMk
denotes the column vector whose subscripts of

components belong to Mk. In particular, if M0 = M,Mk = ∅, k = 1, 2, · · · , q,
then the above dual becomes the Wolfe type dual; if M0 = ∅ and q = 1,M1 =
M, the Mond-Weir type dual is obtained. Since the Wolfe type dual is unsuitable
for single-objective fractional programming problems [15, 22, 23], the duals with
M0 
= ∅ are certainly unsuitable for (MFP). For the generalized Mond-Weir type
dual, we only consider the case M0 = ∅, M1 = M, i.e., the Mond-Weir dual.

3.1. MOND-WEIR DUAL

The Mond-Weir dual of the problem (MFP) has the following form:
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(MFD1) max f (u)
g(u)

=
(

f1(u)
g1(u)

,
f2(u)
g2(u)

, · · · ,
fp(u)
gp(u)

)T

,

s.t.
p∑

i=1
τi∇ fi(u)

gi(u)
+

m∑
j=1

λj∇hj(u) = 0,

λT h(u) � 0,

τ = (τ1, τ2, · · · , τp)T ∈ Rp, τ > 0,
p∑

i=1
τi = 1,

λ = (λ1, λ2, · · · , λm)T ∈ Rm+, u ∈ X.

THEOREM 3.1. (Weak Duality) Assume that x is a feasible solution of (MFP)
and (u, τ , λ) is a feasible solution of (MFD1). If fi and −gi (i = 1, 2, · · · , p) are
(F, αi, ρi, di )-convex at u, hj (j = 1, 2, · · · ,m) is (F, β, ζj , cj )-convex at u, and
the inequality

p∑
i=1

τ iρi

d
2
i (x, u)

αi(x, u)
+

m∑
j=1

λjζj

c2
j (x, u)

β(x, u)
� 0 (11)

holds, where αi(x, u) = αi(x, u)
g(u)
g(x)

, ρi = ρi

(
1 + fi(u)

gi(u)

)
, and di(x, u) =

di(x, u)

g
1
2
i (x)

, then we have

f (x)

g(x)
⊀

f (u)

g(u)
.

Proof. Suppose that

f (x)

g(x)
≺ f (u)

g(u)
,

that is,

fi(x)

gi(x)
− fi(u)

gi(u)
� 0, i = 1, 2, · · · , p, (12)

and at least one inequality holds strictly.
For each i, 1 � i � p, by the generalized convexity assumptions and Lemma

2.1, we have

fi(x)

gi(x)
− fi(u)

gi(u)
� F

(
x, u;αi(x, u)∇ fi(u)

gi(u)

)
+ ρid

2
i (x, u),

where αi(x, u) = αi(x, u)
g(u)
g(x)

, ρi = ρi

(
1 + fi(u)

gi(u)

)
, and di(x, u) = di(x, u)

g
1
2
i (x)

.

Using τ i > 0, αi(x, u) > 0 and (2), we get

τ i

αi(x, u)

(
fi(x)

gi(x)
− fi(u)

gi(u)

)
� F

(
x, u; τ i∇ fi(u)

gi(u)

)
+ τ iρi

d
2
i (x, u)

αi(x, u)
.
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Then, by (12), we obtain

F

(
x, u; τ i∇ fi(u)

gi(u)

)
+ τ iρi

d
2
i (x, u)

αi(x, u)
� 0, i = 1, 2, · · · , p.

Furthermore, at least one of the above inequalities holds strictly. After adding these
inequalities together, we get

p∑
i=1

F

(
x, u; τ i∇ fi(u)

gi(u)

)
+

p∑
i=1

τ iρi

d
2
i (x, u)

αi(x, u)
< 0.

Hence, it follows from (1) that

F

(
x, u;

p∑
i=1

τ i∇ fi(u)

gi(u)

)
+

p∑
i=1

τ iρi

d
2
i (x, u)

αi(x, u)
< 0. (13)

By the (F, β, ζj , cj )-convexity of hj , j = 1, 2, · · · ,m, we have

hj(x) − hj(u) � F(x, u;β(x, u)∇hj(u)) + ζjc
2
j (x, u).

Using λj � 0 and β(x, u) > 0, we get

λj

hj (x) − hj(u)

β(x, u)
� F(x, u;λj∇hj(u)) + λj ζj

c2
j (x, u)

β(x, u)
, j = 1, 2, · · · ,m.

Adding these inequalities together and using the feasibility of x and (u, τ , λ), we
obtain

m∑
j=1

F(x, u;λj∇hj(u)) +
m∑

j=1

λjζj

c2
j (x, u)

β(x, u)
� 0.

Using (1) again, we have

F(x, u;
m∑

j=1

λj∇hj(u)) +
m∑

j=1

λjζj

c2
j (x, u)

β(x, u)
� 0. (14)

Based on the sublinearity of F , the constraints of (MFD1), (11), (13) and (14), the
following contradiction occurs:

0 = F(x, u; 0) = F

(
x, u;

p∑
i=1

τ i∇ fi(u)
gi(u)

+
m∑

j=1
λj∇hj(u)

)

� F

(
x, u;

p∑
i=1

τ i∇ fi(u)
gi(u)

)
+ F(x, u;

m∑
j=1

λj∇hj(u))

< −
(

p∑
i=1

τ iρi

d
2
i (x, u)

αi(x, u)
+

m∑
j=1

λjζj

c2
j (x, u)

β(x, u)

)

� 0.
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Therefore, if follows that

f (x)

g(x)
⊀

f (u)

g(u)
.

�
COROLLARY 3.1. (Weak Duality) Assume that x is a feasible solution of (MFP),
and (u, τ , λ) is a feasible solution of (MFD1). If fi and −gi(i = 1, 2, · · · , p) are
strongly (F, αi, ρi, di)-convex (or (F, αi)-convex) at u, and hj(j = 1, 2, · · · ,m)

is strongly (F, β, ζj , cj )-convex (or (F, β)-convex) at u, then

f (x)

g(x)
⊀

f (u)

g(u)
.

Proof. If the conditions of the corollary are satisfied, then ρi = ρi

(
1+fi(u)

gi(u)

)
�

0, ζj � 0. The inequality (11) in Theorem 3.1,

p∑
i=1

τ iρi

d
2
i (x, u)

αi(x, u)
+

m∑
j=1

λjζj

c2
j (x, u)

β(x, u)
� 0,

holds since all terms in the expression are nonnegative. Hence, the conclusion of
this corollary holds. �
THEOREM 3.2. (Strong Duality) Assume that x is an efficient solution of (MFP)
and the constraint qualification (GGCQ) holds at x (Ref. [14]). Then there exists
(τ , λ) ∈ R

p
+ × Rm+ such that (x, τ , λ) is a feasible solution of (MFD1), and the

objective function values of (MFP) and (MFD1) at the corresponding points are
equal. If the assumptions about the generalized convexity and the inequality (11)
in Theorem 3.1 are also satisfied, then (x, τ , λ) is an efficient solution of (MFD1).

Proof. Since x is an efficient solution of (MFP) and (GGCQ) holds at x, by the
necessary efficiency conditions, there exists (τ , λ) ∈ R

p
+ × Rm+, τ > 0, such that

(x, τ , λ) is a feasible solution for (MFD1). It is clear that the objective function
values of (MFP) and (MFD1) at the corresponding points are equal. If (x, τ , λ) is
not efficient for (MFD1), then there must exist a feasible solution (x∗, τ ∗, λ∗) of
(MFD1) such that

f (x)

g(x)
≺ f (x∗)

g(x∗)
,

which contradicts the weak duality result appearing in Theorem 3.1. Therefore,
(x, τ , λ) is an efficient solution of (MFD1). �

For i = 1, 2, · · · , p, if gi(x) = 1, αi(x, x0) = 1 for all x, x0 ∈ X, the object-
ive function fi(x) and constraint functions are (F, ρ)-convex, then duality results
similar to those in [20] can be obtained. Now, let gi(x) = 1, αi(x, x0) = 1 for all
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x, x0 ∈ X and F(x, x0; ∇f (x0)) = ∇f (x0)Tη(x, x0). If ρi = 0 and the modified
generalized convexity is imposed on the objective and constraint functions, then
the corresponding results as those in [8] can be obtained; if ρi 
= 0 and other
generalized convexity assumptions are imposed on the objective and constraint
functions, then results similar to those given in [1, 9] can be obtained.

3.2. SCHAIBLE DUAL

In this subsection, we shall consider the following extended form of the Schaible
dual for (MFP) [22, 23]:

(MFD2) max λ = (λ1, λ2, · · · , λp)T ,

s.t.
p∑

i=1
τi∇u(fi(u) − λigi(u)) +

m∑
j=1

vj∇hj(u) = 0,

fi(u) − λigi(u) � 0, i = 1, 2, · · · , p,

vT h(u) � 0,

τ > 0,
p∑

i=1
τi = 1,

λ ∈ R
p
+, τ ∈ R

p
+, v ∈ Rm+, u ∈ X.

THEOREM 3.3. (Weak Duality). Assume that x is a feasible solution of (MFP)
and (u, τ , λ, v) is a feasible solution of (MFD2). If one of the following holds:

(I) fi and −gi (i = 1, 2, · · · , p) are (F, αi, ρi, di)-convex at u , hj (j =
1, 2, · · · ,m) is (F, β, ζj , cj )-convex at u, and

p∑
i=1

τ iρi(1 + λi)
d2

i (x, u)

αi(x, u)
+

m∑
j=1

vj ζj

c2
j (x, u)

β(x, u)
� 0; (15)

(II) fi and −gi (i = 1, 2, · · · , p) are (F, α, ρi, d)-convex at u, hj (j =
1, 2, · · · ,m) is (F, α, ζj , d)-convex at u, and the vectors τ , λ, v satisfy:

p∑
i=1

τ iρi(1 + λi) +
m∑

j=1

vj ζj � 0, (16)

then

f (x)

g(x)
⊀ λ.

Proof. Suppose that

f (x)

g(x)
≺ λ,
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i.e.,

fi(x)

gi(x)
� λi, i = 1, 2, · · · , p,

and at least one of the above inequalities holds strictly. Since gi(x) > 0 for each i,
the above inequalities are equivalent to

fi(x) � λigi(x), i = 1, 2, · · · , p.

(I) Since fi and −gi are (F, αi, ρi, di)-convex at u, using the feasibility of
(u, τ , λ, v) and the sublinearity of F , we have

0 � fi(x) − λigi(x)

� fi(u) + F(x, u;αi(x, u)∇fi(u)) + ρid
2
i (x, u)

−λigi(u) + F(x, u;−αi(x, u)∇uλigi(u)) + λiρid
2
i (x, u)

� F(x, u;αi(x, u)∇u(fi(u) − λigi(u))) + ρi(1 + λi)d
2
i (x, u).

From τ i > 0 and the sublinearity of F , we also know that

F(x, u; τ i∇u(fi(u) − λigi(u))) + τ iρi(1 + λi)
d2

i (x, u)

αi(x, u)
� 0, i = 1, 2, · · · , p.

(17)

Furthermore, at least one of these inequalities holds strictly.
Adding the above inequalities together, we obtain

p∑
i=1

F(x, u; τ i∇u(fi(u) − λigi(u))) +
p∑

i=1

τ iρi(1 + λi)
d2

i (x, u)

αi(x, u)
< 0.

By (1), this indicates that

F(x, u;
p∑

i=1

τ i∇u(fi(u) − λigi(u))) < −
p∑

i=1

τ iρi(1 + λi)
d2

i (x, u)

αi(x, u)
. (18)

On the other hand, the (F, β, ζj , cj )-convexity of hj (j = 1, 2, · · · ,m) yields

hj(x) − hj(u) � F(x, u;β(x, u)∇hj(u)) + ζjc
2
j (x, u), j = 1, 2, · · · ,m.

By v � 0, β(x, u) > 0 and the sublinearity of F , we have

vj (hj(x) − hj(u))

β(x, u)
� F(x, u; vj∇hj(u)) + vjζj

c2
j (x, u)

β(x, u)
, j = 1, 2, · · · ,m.

Adding them together, we get

m∑
j=1

vj (hj (x) − hj(u))

β(x, u)
�

m∑
j=1

F(x, u; vj∇hj(u)) +
m∑

j=1

vjζj

c2
j (x, u)

β(x, u)
.
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Using (1), v � 0, β(x, u) > 0, and the feasibility of x and (u, λ, v), we obtain

F(x, u;
m∑

j=1

vj∇hj(u)) +
m∑

j=1

vj ζj

c2
j (x, u)

β(x, u)
� 0,

i.e.,

F(x, u;
m∑

j=1

vj∇hj(u)) � −
m∑

j=1

vj ζj

c2
j (x, u)

β(x, u)
. (19)

Adding (18) and (19) together, and using the sublinearity of F and the feasibility
of (u, λ, v), we have

−
p∑

i=1
τ iρi(1 + λi)

d2
i (x, u)

αi(x, u)
−

m∑
j=1

vjζj

c2
j (x, u)

β(x, u)

> F(x, u;
p∑

i=1
τ i∇u(fi(u) − λigi(u))) + F(x, u;

m∑
j=1

vj∇hj(u))

� F(x, u; 0) = 0.

This indicates
p∑

i=1

τ iρi(1 + λi)
d2

i (x, u)

αi(x, u)
+

m∑
j=1

vjζj

c2
j (x, u)

β(x, u)
< 0,

which contradicts (15). Therefore, the conclusion of the weak duality holds.
(II) It is clear that the second part of this corollary holds if the parameters αi , di

and cj , are independent of i or j , respectively. �
THEOREM 3.4. (Strong Duality). Assume x is an efficient solution of (MFP),
and the constraint qualification (GGCQ) holds at x (Ref. [14]). Then there exist
τ ∈ R

p
+, λ ∈ R

p
+, v ∈ Rm+ such that (x, τ , λ, v) is a feasible solution of (MFD2)

and

λ = f (x)

g(x)
.

Furthermore, if all assumptions in Theorem 3.3 are satisfied, then the correspond-
ing (x, τ , λ, v) is an efficient solution of (MFD2).

Proof. Since x is an efficient solution of (MFP) and (GGCQ) holds at x, there

exist τ ∈ R
p
+, τ > 0,

p∑
i=1

τi = 1, v ∈ Rm+ such that

p∑
i=1

τi∇ fi(x)
gi(x)

+
m∑

j=1
vj∇hj(x) = 0,

vT h(x) = 0.
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Denote

λi = fi(x)

gi(x)
, i = 1, 2, · · · , p,

τ i =
τi

gi(x)
p∑

i=1

τi

gi(x)

, i = 1, 2, · · · , p,

vj = vj

p∑
i=1

τi

gi(x)

, j = 1, 2, · · · ,m.

Since

∇ fi(x)

gi(x)
= gi(x)∇fi(x) − fi(x)∇gi(x)

g2
i (x)

,

we can derive the following:

p∑
i=1

τ i∇x(fi(x) − λigi(x)) +
m∑

j=1
vj∇hj(x) = 0,

vT h(x) = 0,

fi(x) − λigi(x) = 0,

τ , λ ∈ R
p
+, τ > 0,

p∑
i=1

τ i = 1, v ∈ Rm+,

i.e., (x, τ , λ, v) is a feasible solution of (MFD2). Obviously, the corresponding

objective function value of (MFD2) is equal to f (x)
g(x)

. The proof of the last part is

similar to that of Theorem 3.3. �

3.3. EXTENDED BECTOR TYPE DUAL

For a single-objective fractional programming problem in [4], Bector used the pos-
itivity of the denominator to transform the inequality constraints and add them to
the objective by Lagrangian mulitipliers for establishing a kind of dual. Since the
denominators in (MFP) need not be the same, we use the equivalent form (MFP )
of (MFP) to establish the following dual, which is called the extended Bector type
dual of (MFP):
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(MFD3) max

(
G1(u)f1(u) + vT

M0
hM0(u)

G(u)
, · · · ,

Gp(u)fp(u) + vT
M0

hM0(u)

G(u)

)T

,

s.t.
p∑

i=1
τi∇u

Gi(u)fi(u) + vT
M0

hM0(u)

G(u)
+

q∑
k=1

∇uv
T
Mk

hMk
(u) = 0,

vT
Mk

hMk
(u) � 0, k = 1, 2, · · · , q,

Gi(u)fi(u) + vT
M0

hM0(u) � 0, i = 1, 2, · · · , p,

p∑
i=1

τi = 1, τ = (τ1, τ2, · · · , τp)T ∈ R
p
+, τ > 0,

u ∈ X, vMk
∈ R

|Mk |+ , k = 0, 1, 2, · · · , q.

THEOREM 3.5. (Weak Duality) Let x be a feasible solution of (MFP) and (u, τ, v)

be a feasible solution of (MFD3). Assume that −G is (F, α, ρ, d)-convex at u,
Gifi (i = 1, 2, · · · , p) is (F, α, ρi, d)-convex at u and hj (j = 1, 2, · · · ,m) is
(F, α, ζj , d)-convex at u. If ρ � max

1�i�p
ρi and the following inequality holds:

∑p

i=1 τiρi

(
1 + Gi(u)fi(u)+vT

M0
hM0 (u)

G(u)

)

+∑
j∈M0

vj ζj + G(u)
∑q

k=1

∑
j∈Mk

vj ζj � 0,

(20)

then we have

f (x)

g(x)
⊀

G(u)f (u) + vT
M0

hM0(u) e

G(u)
,

where G(u) = diag{G1(u), · · · ,Gp(u)} and each component in e ∈ Rp is equal
to 1.

Proof. Suppose to the contrary that

f (x)

g(x)
≺ G(u)f (u) + vT

M0
hM0(u) e

G(u)
.

For any i, 1 � i � p, the inequality

fi(x)

gi(x)
�

Gi(u)fi(u) + vT
M0

hM0(u)

G(u)

is equivalent to the following:

Gi(x)fi(x)

G(x)
− Gi(u)fi(u) + vT

M0
hM0(u)

G(u)
� 0,

i.e.,

Gi(x)fi(x)G(u) − (Gi(u)fi(u) + vT
M0

hM0(u))G(x) � 0.
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Denote

	i(x) = Gi(x)fi(x)G(u) − (Gi(u)fi(u) + vT
M0

hM0(u))G(x).

Then, by hypothesis, we know that

	i(x) � 0, i = 1, 2, · · · , p, (21)

and at least one of these inequalities holds strictly.
Since 	i(u) = −vT

M0
hM0(u)G(u), we have

	i(x) = 	i(x) − 	i(u) − vT
M0

hM0(u)G(u)

= G(u)(Gi(x)fi(x) − Gi(u)fi(u)) + (Gi(u)fi(u)

+vT
M0

hM0(u))(−G(x) + G(u)) − vT
M0

hM0(u)G(u).

Note that, for i = 1, 2, · · · , p, −G(x) is also (F, α, ρi, d)-convex at u. By the
(F, α, ρi, d)-convexity of Gi(x)fi(x) and −G(x), G(u) > 0, and Gi(u)fi(u) +
vT

M0
hM0(u) � 0, we get

	i(x) � G(u)(F (x, u;α(x, u)∇(Gi (u)fi(u))) + ρid
2(x, u))

+(Gi(u)fi(u) + vT
M0

hM0(u))(F (x, u;−α(x, u)∇G(u))

+ρid
2(x, u)) − vT

M0
hM0(u)G(u).

Furthermore, using the sublinearity of F and α(x, u) > 0, we obtain

	i(x) � α(x, u)F (x, u;G(u)∇(Gi (u)fi(u)) + G(u)ρid
2(x, u)

+α(x, u)F (x, u;−(Gi (u)fi(u) + vT
M0

hM0(u))∇G(u))

+(Gi(u)fi(u) + vT
M0

hM0(u))ρid
2(x, u) − vT

M0
hM0(u)G(u).

Adding the term α(x, u)F (x, u;G(u)∇u(v
T
M0

hM0(u))) and its negative to the right-
hand side of the above inequality and using the sublinearity of F again, we have

	i(x) � α(x, u)F (x, u;G(u)∇(Gi (u)fi(u)))

+α(x, u)F (x, u;G(u)∇u(v
T
M0

hM0(u)))

−α(x, u)F (x, u;G(u)∇u(v
T
M0

hM0(u))) + G(u)ρid
2(x, u)

+α(x, u)F (x, u;−(Gi (u)fi(u) + vT
M0

hM0(u))∇G(u))

+(Gi(u)fi(u) + vT
M0

hM0(u))ρid
2(x, u) − vT

M0
hM0(u)G(u)

� α(x, u)F

(
x, u;G(u)∇u(Gi(u)fi(u) + vT

M0
hM0(u))

−(Gi(u)fi(u) + vT
M0

hM0(u))∇G(u)

)

−α(x, u)F (x, u;G(u)∇u(v
T
M0

hM0(u))) + G(u)ρid
2(x, u)

+(Gi(u)fi(u) + vT
M0

hM0(u))ρid
2(x, u) − vT

M0
hM0(u)G(u).
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The last inequality is equivalent to the following:

	i(x) � α(x, u)G2(u)F

(
x, u; ∇u

Gi(u)fi(u) + vT
M0

hM0(u)

G(u)

)

−α(x, u)F (x, u;G(u)∇u(v
T
M0

hM0(u))) + G(u)ρid
2(x, u)

+(Gi(u)fi(u) + vT
M0

hM0(u))ρid
2(x, u) − vT

M0
hM0(u)G(u).

Let us multiply the above inequality by τi for i = 1, · · · , p, respectively, and add
them together. Since at least one of inequalities in (21) holds strictly, τi > 0 and
p∑

i=1
τi = 1, by using the sublinearity of F , we can obtain

0 >
p∑

i=1
τi	i(x)

� α(x, u)G2(u)F

(
x, u;

p∑
i=1

τi∇u

Gi(u)fi(u) + vT
M0

hM0(u)

G(u)

)

−α(x, u)F (x, u;G(u)∇u(v
T
M0

hM0(u))) +
p∑

i=1
τiG(u)ρid

2(x, u)

+
p∑

i=1
τi(Gi(u)fi(u) + vT

M0
hM0(u))ρid

2(x, u) − vT
M0

hM0(u)G(u).

Note that (u, τ, v) is dual feasible, and so it follows that

p∑
i=1

τi∇u

Gi(u)fi(u) + vT
M0

hM0(u)

G(u)
+

q∑
k=1

∇uv
T
Mk

hMk
(u) = 0.

Hence, we have

0 >
p∑

i=1
τi	i(x)

� α(x, u)G2(u)F (x, u;−
q∑

k=1
∇u(v

T
Mk

hMk
(u)))

−α(x, u)F (x, u;G(u)∇u(v
T
M0

hM0(u))) +
p∑

i=1
τiG(u)ρid

2(x, u)

+
p∑

i=1
τi(Gi(u)fi(u) + vT

M0
hM0(u))ρid

2(x, u) − vT
M0

hM0(u)G(u).

(22)

On the other hand, by the (F, α, ζj , d)-convexity of hj , j ∈ M0, we have

hj(x) − hj(u) � F(x, u;α(x, u)∇hj (u)) + ζjd
2(x, u).

After multiplying the above inequality by vj for each j ∈ M0, we add them to-
gether. By the feasibility of x and (u, τ, v), G(u) > 0, vj � 0, and the sublinearity
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of F , we get

−G(u)
∑

j∈M0

vjhj (u)) � G(u)(
∑

j∈M0

vjhj (x) − ∑
j∈M0

vjhj (u))

� G(u)
∑

j∈M0

vjF (x, u;α(x, u)∇hj (u))

+G(u)
∑

j∈M0

vj ζjd
2(x, u)

� G(u)F(x, u;α(x, u)
∑

j∈M0

vj∇hj(u))

+G(u)
∑

j∈M0

vj ζjd
2(x, u),

that is,

−G(u)vT
M0

hM0(u) − G(u)F(x, u;α(x, u)∇u(v
T
M0

hM0(u)))

� G(u)
∑

j∈M0

vjζj d
2(x, u).

Hence, by (22), we obtain

0 >

p∑
i=1

τi	(x)

� α(x, u)G2(u)F (x, u;−
q∑

k=1

∇u(v
T
Mk

hMk
(u)))

+
p∑

i=1

τiG(u)ρid
2(x, u) + G(u)

∑
j∈M0

vjζj d
2(x, u)

+
p∑

i=1

τi(Gi(u)fi(u) + vT
M0

hM0(u))ρid
2(x, u). (23)

For k = 1, 2, · · · , q, j ∈ Mk, by the (F, α, ζj , d)-convexity of hj , the feasibility
of x and (u, τ, v), we obtain

0 �
q∑

k=1

vT
Mk

(hMk
(x) − hMk

(u))

�
q∑

k=1

∑
j∈Mk

vj (F (x, u;α(x, u)∇hj (u)) + ζj d
2(x, u))

� F(x, u;α(x, u)

q∑
k=1

∇u(v
T
Mk

hMk
(u))) +

q∑
k=1

∑
j∈Mk

vj ζjd
2(x, u). (24)
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Multiplying (24) by G2(u) > 0 and adding it to (23), we have

0 > α(x, u)G2(u)F (x, u;−
q∑

k=1
∇u(v

T
Mk

hMk
(u)))

+
p∑

i=1
τiG(u)ρid

2(x, u) + G(u)
∑

j∈M0

vjζj d
2(x, u)

+
p∑

i=1
τi(Gi(u)fi(u) + vT

M0
hM0(u))ρid

2(x, u)

+α(x, u)G2(u)F (x, u;
q∑

k=1
∇u(v

T
Mk

hMk
(u)))

+G2(u)
q∑

k=1

∑
j∈Mk

vj ζjd
2(x, u).

Since G(u) > 0, dividing the two sides of the above inequality by G(u) and using
the sublinearity of F , we obtain

0 >

(
p∑

i=1
τiρi(1 + Gi(u)fi(u)+vT

M0
hM0 (u)

G(u)
) + ∑

j∈M0

vj ζj

+G(u)
q∑

k=1

∑
j∈Mk

vj ζj

)
d2(x, u),

which contradicts (20). Hence, the conclusion of Theorem 3.5 holds. �
THEOREM 3.6. (Strong Duality) Assume that x is an efficient solution of (MFP)
and the constraint qualification (GGCQ) holds at x (Ref. [14]). Then there exists
(τ , v) such that (x, τ , v) is a feasible solution of (MFD3), and the objective func-
tion values of (MFP) and (MFD3) at x and (x, τ , v), respectively, are equal. If the
assumptions and conditions in Theorem 3.5 are also satisfied, then (x, τ , v) is an
efficient solution of (MFD3).

Proof. Since x is an efficient solution of (MFP) and (GGCQ) holds at x, there

exists τ ∈ R
p
+, τ > 0,

p∑
i=1

τ i = 1, v ∈ Rm+ such that

p∑
i=1

τ i∇ fi(x)

gi(x)
+

m∑
j=1

vj∇hj(x) = 0, (25)

vT h(x) = 0. (26)

Since x is also feasible for (MFP), hj(x) � 0 for j = 1, 2, · · · ,m. Hence, by (26)
and vj � 0, we have

vT
M0

hM0(x) = 0,

vT
Mk

hMk
(x) = 0, k = 1, 2, · · · , q.
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It is easy to verify that

m∑
j=1

vj∇hj(x) =
p∑

k=0

∇x(v
T
Mk

hMk
(x)),

and, for i = 1, · · · , p,

∇ fi(x)

gi(x)
= ∇x

Gi(x)fi(x)

G(x)
.

From (25) and
p∑

i=1
τ i = 1, we have

p∑
i=1

τ i∇ fi(x)

gi(x)
+

m∑
j=1

vj∇hj(x)

=
p∑

i=1

τ i∇x

Gi(x)fi(x)

G(x)
+ ∇x(v

T
M0

hM0(x)) +
q∑

k=1

∇x(v
T
Mk

hMk
(x))

=
p∑

i=1

τ i∇x

Gi(x)fi(x) + G(x)vT
M0

hM0(x)

G(x)
+

q∑
k=1

∇x(v
T
Mk

hMk
(x))

= 0.

The above equations imply that

p∑
i=1

τ i∇x

Gi(x)fi(x) + G(x)vT
M0

hM0(x)

G(x)
+

q∑
k=1

∇x(v
T
Mk

hMk
(x)) = 0,

G(x)vT
Mk

hMk
(x) = 0, k = 1, 2, · · · , q,

Gi(x)fi(x) + G(x)vT
M0

hM0(x) � 0,

vMk
G(x) ∈ R

|Mk|+ , k = 0, 1, 2, · · · , q.

This indicates that (x, τ , vG(x)) is also a feasible solution of (MFD3). Since
vT

M0
hM0(x) = 0, the values of the corresponding objective functions of (MFP) and

(MFD3) are equal. Obviously, if the assumptions about the generalized convexity
of the related functions and other conditions in Theorem 3.5 are also satisfied, then
(x, τ , vG(x)) is an efficient solution of (MFD3). �
4. Concluding Remarks

In this paper, a unified formulation of the generalized convexity defined in [12]
is adopted, which includes many other generalized convexity concepts in optim-
ization theory as special cases. Our concept of generalized convexity is suitable
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to analyze the efficiency conditions and duality of multiobjective fractional pro-
gramming problems. Efficiency conditions and duality for a class of multiobjective
fractional programming problems are presented. We extend the methods, which
were adopted for single-objective fractional programming problems in [10, 12, 21],
to the case with multiple fractional objectives. We also present the extended Bector
type dual by using an equivalent formulation of the primal problem. Note that we
only consider (MFP) from a viewpoint of the efficient solution in this paper. The
methods used here can be extended to the study of (MFP) from a viewpoint of the
weak efficient solution.
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